If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-16x^2-6x+190=0
a = -16; b = -6; c = +190;
Δ = b2-4ac
Δ = -62-4·(-16)·190
Δ = 12196
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{12196}=\sqrt{4*3049}=\sqrt{4}*\sqrt{3049}=2\sqrt{3049}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-6)-2\sqrt{3049}}{2*-16}=\frac{6-2\sqrt{3049}}{-32} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-6)+2\sqrt{3049}}{2*-16}=\frac{6+2\sqrt{3049}}{-32} $
| 6(x-6)-6=-4(6x+8)-2x | | 3j−5=7 | | 8(3b-8)=10b=48 | | s+1=10-25 | | 3x−12=24 | | 9n−7=5n+5 | | x+√x=6/25 | | -4+3r=8+5r | | 18u=9u+63 | | 3s-62=4s-86 | | 9+2g=g | | 3.5n+0.8=18.24-5.9n | | 5x+8+10x+7=86 | | 4(x+3)-9=x+3(x+1) | | 2(5x+3x)=64 | | −9g−12=−6g−39 | | 120+20b=180 | | -60=6+14k | | 4-6n=-5n | | 6(x-3)=8(x-4 | | 5(x-4)/2=15 | | 850=1.5x+x | | 2x^-1-11x^-1-6=0 | | 20-4x=40-12x | | 2w-12=4w | | 8n+1=6n+27 | | 3/x-4=2 | | 7r=8+6r | | 14v=9v+10 | | N-70=-(15x4) | | 8+1.20r=29.60 | | 3x+5x+42=99 |